Transformation- based density estimation For weighted distributions
نویسندگان
چکیده
منابع مشابه
Bandwidth Selection for Weighted Kernel Density Estimation
Abstract: In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation me...
متن کاملUsing Weighted Distributions for Modeling Skewed, Multimodal and Truncated Data
When the observations reflect a multimodal, asymmetric or truncated construction or a combination of them, using usual unimodal and symmetric distributions leads to misleading results. Therefore, distributions with ability of modeling skewness, multimodality and truncation have been in the core of interest in statistical literature, always. There are different methods to contract ...
متن کاملIterated Transformation-Kernel Density Estimation
Transformation from a parametric family can improve the performance of kernel density estimation. In this paper, we give two data-driven estimators for the optimal transformation parameter. We demonstrate that multiple families of transformations can be employed at the same time, and there can be beneets to iterating this process. The transformation scheme can be expected to rst pick the right ...
متن کاملLocally Weighted Full Covariance Gaussian Density Estimation
We describe an interesting application of the principle of local learning to density estimation. Locally weighted fitting of a Gaussian with a regularized full covariance matrix yields a density estimator which displays improved behavior in the case where much of the probability mass is concentrated along a low dimensional manifold. While the proposed estimator is not guaranteed to integrate to...
متن کاملRoot-n convergent transformation-kernel density estimation
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, redistribution , reselling , loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to da...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonparametric Statistics
سال: 2000
ISSN: 1048-5252,1029-0311
DOI: 10.1080/10485250008832838